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A. Implementation and training details

Implementation details We use the single-frame version of
VPose [7] as our pose estimator. The pose augmentor con-
sists of four linear layers with Batch Normalization (BN) [3]
and leaky ReLU [2]. It first transforms the input 3D poseX
to 256-D hidden features and then predicts the augmenta-
tion parameters γba, γbl,R and t from the hidden features.
Both the 3D and 2D pose discriminators consist of 4 linear
layers with leaky ReLU and residual connection. The hid-
den feature dimensions are set as 256 and 100 for 3D and
2D discriminator, respectively. We train our model for 50
epochs on Human3.6M, with batch size of 1024. We adopt
Adam optimizer [5] with linear decay and an initial learning
rate of 0.001 for all components (i.e., augmentor, discrim-
inator, estimator). The hard ratio β linearly increases from
2 to 20 during the training process. The threshold for regu-
larizing the augmentation parameters γba and γbl is set as
0.1.

Training details With the differentiable augmentor design,
the pose augmentorA with parameters θA, discriminatorD
with parameters θD and estimator P with parameters θ can
be jointly trained end-to-end as illustrated in Algorithm 1.
In detail, we firstly update the augmentor A and discrimi-
nator D alternatively by minimizing the pose augmentation
loss Eqn. (11) and discrimination loss Eqn. (12) with the
source pose pairs {xi,Xi}Ni=1, and augmented pose pairs
{x′

i,X
′
i}Ni=1. We then use both the source and augmented

pose pairs to train the estimator P by minimizing the pose
estimation loss Eqn. (8).

B. More qualitative results

Here we present more qualitative results of the pose es-
timator (i.e., VPose [7] (1-frame)) trained with and w/o our
PoseAug on LSP [4], MPII [1], and MPI-INF-3DHP [6], as
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Algorithm 1: PoseAug training strategy

Input: N training samples {xi,Xi}Ni=1, training
epochs E and learning rate α.

Output: pose estimator P , augmentor A and
discriminator D.

for e = 1, · · · , E do

// Update augmentor A
Generate augmented sample {x′

i,X
′
i}Ni=1 from

{xi,Xi}Ni=1 through the augmentor A
Calculate the augmentation loss LA (Eqn. (11))
Calculate gradients∇θALA and update the
parameters of A by θA = θA − α∇θALA

// Update discriminator D
Calculate the discrimination loss LD (Eqn. (12))
Calculate gradients∇θDLD and update the

parameters of D by θD = θD − α∇θDLD

// Update estimator P
Calculate the estimation loss LP (Eqn. (8)) by

feeding {xi,Xi}Ni=1 and {x′
i,X

′
i}Ni=1

alternatively to P
Calculate gradients∇θLP and update the

parameters of P by θ = θ − α∇θLP

end

shown in Fig. S1. The comparison of inference results be-
tween with and w/o our PoseAug demonstrate that our auto-
augmentation framework helps the pose estimator achieve
better performance on challenge in-the-wild scenes. In ad-
dition, Fig. S2 shows three examples of source and corre-
sponding augmented pose pairs. These examples demon-
strate that our augmentor applies meaningful augmentation
operation in generating harder cases, e.g., harder posture
(1st row), harder view point (2nd row), and even unseen
pose (3rd row), which increases the data diversity and leads



to better generalization for estimator.

C. Ablation on feedback
Besides, the error feedback strategy brings significant

improvement on 3DPW dataset (from 84.8 to 81.6, Ta-
ble S1). This clearly verifies its effectiveness, especially
on challenging scenarios.

Table S1: Ablation study on error feedback strategy on 3DPW.
Augmentation denotes the combination of BA, BL, RT operations.

Method Augmentation Feedback PA-MPJPE (↓)
Baseline 94.6
Variant A X 84.8 (-9.8)
PoseAug X X 81.6 (-13)
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Figure S1: Example 3D pose estimations from 3DHP (1st row), LSP (2nd row), and MPII (3rd and 4th row). PoseAug results
are shown in the 1st and 3rd columns. The 2nd and 4th columns show the results of Baseline, i.e., VPose [7] (1-frame) trained
without PoseAug. The grey skeletons in 3DHP (1st row) are ground truth. Errors are highlighted by black arrows.



Figure S2: Examples of the source pose pair (x: 1st column, X: 2nd column) and its augmented pose pair (x′: 3rd column,
X ′: 4th column) . The examples include harder posture (1st row), harder view point (2nd row), and unseen pose (3rd row).


