
Direct Multi-view Multi-person 3D Pose Estimation
(Supplementary Material)

Tao Wang1,2∗, Jianfeng Zhang2∗, Yujun Cai1, Shuicheng Yan1, Jiashi Feng1,
1Sea AI Lab 2National University of Singapore,

twangnh@gmail.com,
zhangjianfeng@u.nus.edu,

{caiyj,yansc,fengjs}@sea.com

A Implementation Details

We use PyTorch [9] to implement the proposed Multi-view Pose transformer (MvP) model. Our
MvP model is trained on 8 Nvidia RTX 2080 Ti GPUs, with a batch size of 1 per GPU and a total
batch size of 8. We use the Adam optimizer [7] with an initial learning rate of 1e-4 and decrease the
learning rate by a factor of 0.1 at 20 epochs during training. The hyper-parameter λ for balancing
confidence score and pose regression losses is set to 2.5. We use the image feature representations
(256-d) from the de-convolution layer of the 2D pose estimator PoseResNet [11] for multi-view
inputs. Additionally, we provide the code of MvP, including the implementation of model architecture,
training and inference, in the folder of “./mvp” for better understanding our method.

B Architecture Details

Figure S1: (a) Illustration of the proposed hierarchical query embedding and the input-dependent
query adaptation schemes. (b) Architecture of MvP’s decoder layer. It consist of a self-attention,
a projective attention and a feed-forward network (FFN) with residual connections. Add means
addition and Norm means normalization. Best viewed in color.

Hierarchical Joint Query Embedding Fig. S1 (a) illustrates our proposed hierarchical query
embedding scheme. As shown in Eqn. (1), each person-level query is added individually to the same
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set of joint-level queries to obtain the per-person customized joint queries. This scheme shares the
joint-level queries across different persons and thus reduces the number of parameters (the joint
embeddings) to learn, and helps the model generalize better. The generated per-person joint query
embedding is further augmented by adding the scene-level feature extracted from the input images.

Decoder Layer The decoder of MvP transformer consists of multiple decoder layers for regressing
3D joint locations progressively. Fig. S1 (b) demonstrates the detailed architecture of a decoder layer,
which contains a self-attention module to perform pair-wise interaction between all the joints from
multiple persons in the scene; a projective attention module to selectively gather the complementary
multi-view information; and a feed-forward network (FFN) to predict the 3D joint locations and their
confidence scores.

C More Ablation Studies

Replacing Camera Ray Directions with 2D Spatial Coordinates MvP encodes camera ray di-
rections into the multi-view image feature representations via RayConv. We also compare with
the simple positional embedding baseline that uses 2D coordinates as the positional information
to embed, similar to the previous transformer-based models for vision tasks [2, 3]. Specifically,
we replace the camera ray directions with 2D spatial coordinates of the input images in RayConv.
Results are shown in Table S1. We can observe using the 2D coordinates in RayConv results in much
worse performance, i.e., 83.3 in AP25 and 18.1 in MPJPE. This result demonstrates that using such
view-agnostic 2D coordinates information cannot well encode multi-view geometrical information
into the model; while using camera ray directions can effectively encode the positional information
of each view in 3D space, thus leading to better performance.

Table S1: Results of replacing camera ray directions with 2D coordinates in RayConv.

Positional Input AP25 AP100 MPJPE

Camera Ray Directions 92.3 97.5 15.8
2D Spatial Coordinates 83.3 93.0 18.1

Replacing Projective Attention with Dense Attention We further investigate the effectiveness of
the proposed projective attention by comparing it with the dense dot product attention, i.e., conducting
attention densely over all spatial locations and camera views for multi-view information gathering.
Results are given in Table S2. We observe MvP with the dense attention (MvP-Dense) delivers very
poor performance (0.0 AP25 and 114.5 MPJPE) since it does not exploit any 3D geometries and
thus is difficult to optimize. Moreover, such dense dot product attention incurs significantly higher
computation cost than the proposed projective attention—MvP-Dense costs 31 G GPU memory, more
than 5× larger than MvP with the projective attention, which only costs 6.1 G GPU memory.

Table S2: Comparison between the dense attention and the proposed projective attention. MvP-Dense
means replacing the projective attention with the dense attention. We report GPU memory cost with
a batch size of 1 during training.

Models AP25 AP100 MPJPE GPU Memory[G]

MvP-Dense 0.0 16.1 114.5 31.0
MvP 92.3 97.5 15.8 6.1

D More Results

Quantitative Result We also evaluate our MvP model on the most widely used single-person
dataset Human3.6M [4] collected in an indoor environment. We follow the standard training and
evaluation protocol [8, 5, 10] and use MPJPE as evaluation metric. Our MvP model achieves 18.6
MPJPE which is comparable to state-of-the-art approaches (18.6 v.s 17.7 and 19.0) [5, 10].
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Figure S2: Example 3D pose estimations from Panoptic dataset. The left four columns show the
multi-view inputs and the corresponding body mesh estimations from MvP. The rightmost column
shows the estimated 3D poses from two different views. Best viewed in color.

Qualitative Result Here we present more qualitative results of MvP on Panoptic [6] (Fig. S2), Shelf
and Campus [1] (Fig. S3) datasets. From Fig S2 we can observe that MvP can produce satisfactory
3D pose and body mesh estimations even in case of strong pose deformations (the 1st example) and
large occlusion (the 2nd and 3rd examples). Moreover, the performance of MvP is robust even in the
challenging crowded scenario, as shown in the 1st example in Fig. S3.
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